
Electric Potential and Equipotential Surfaces

Objectives

After going through this lesson, the learners will be able to:

● Understand Electric Potential Electric potential difference

● Derive an expression for Electric potential: due to a point charge, a dipole and a

system of charges

● Visualize equipotential surfaces

● Calculate  electric potential

Content Outline

● Unit syllabus

● Module wise distribution

● Words you must know

● Introduction

● Electrostatic potential and potential difference

● Electric potential due to a point charge,

● Electric potential a system of charges

● Electric potential a uniformly charged thin spherical shell

● Electric potential due to a dipole

● Equipotential surfaces

● Electrostatic potential energy

● Potential energy in an external field of a point charge and a dipole

● Summary

Unit Syllabus

Chapter-1: Electric Charges and Fields

Electric Charges; Conservation of charge, Coulomb’s law-force between two point charges,

forces between multiple charges; superposition principle and continuous charge distribution. 

Electric field; electric field due to a point charge, electric field lines, electric dipole, electric

field due to a dipole, torque on a dipole in uniform electric field.
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Electric flux, statement of Gauss’s theorem and its applications to find field due to infinitely

long straight wire, uniformly charged infinite plane sheet and uniformly charged thin

spherical shell (field inside and outside).

Chapter-2: Electrostatic Potential and Capacitance

Electric potential, potential difference, electric potential due to a point charge, a dipole

and system of charges; equipotential surfaces, electrical potential energy of a system of two

point charges and of electric dipole in an electrostatic field.

Conductors and insulators, free charges and bound charges inside a conductor. Dielectrics

and electric polarization, capacitors and capacitance, combination of capacitors in series and

in parallel, capacitance of a parallel plate capacitor with and without dielectric medium

between the plates, energy stored in a capacitor.

Module Wise Distribution of Unit Syllabus - 11 Modules

The above unit is divided into 11 modules for better understanding.

Module 1 ● Electric charge

● Properties of charge

● Coulombs’ law

● Characteristics of coulomb force

● Constant of proportionality and the intervening medium

● Examples

Module 2 ● Forces between multiple charges

● Principle of superposition

● Continuous distribution of charges

● numerical

Module 3 ● Electric field E

● Importance of field E and ways of describing field

● Superposition of electric field

● Examples

Module 4 ● Electric dipole

● Electric field of a dipole

● Charges in external field

● Dipole in external field Uniform and non-uniform
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Module 5 ● Electric flux,

● Flux density

● Gauss theorem

● Application of gauss theorem to find electric field

● For a distribution of charges

● Numerical

Module 6 ● Application of gauss theorem Field due to field infinitely

long straight wire

● Uniformly charged infinite plane

● Uniformly charged thin spherical shell (field inside and

outside)

● Graphs

Module 7 ● Electric potential,

● Potential difference,

● Electric potential due to a point charge, a dipole and system

of charges;

● Equipotential surfaces,

● Electrical potential energy of a system of point charges and

of electric dipole in an electrostatic field.

● Numerical

Module 8 ● Conductors and insulators,

● Free charges and bound charges inside a conductor.

● Dielectrics and electric polarization

Module 9 ● Capacitors and Capacitance,

● Combination of capacitors in series and in parallel

● Redistribution of charges, common potential

● numerical

Module 10 ● Capacitance of a parallel plate capacitor with and without

dielectric medium between the plates

● Energy stored in a capacitor

Module 11 ● Typical problems on  capacitors

Module 7
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Words You Must Know

Let us recollect the words we have been using in our study of this physics course.

● Electric Charge: Electric charge is an intrinsic characteristic of many of the

fundamental particles of matter that gives rise to all electric and magnetic forces and

interactions. There are two kinds of charges, positive and negative.

● Conductors: Some substances readily allow passage of electricity through them,

others do not. Those which allow electricity to pass through them easily are called

conductors. They have electric charges (electrons) that are comparatively free to

move inside the material. Metals, humans, animal bodies and earth are all conductors

of electricity.

● Insulators: Most of the non-metals, like glass, porcelain, plastic, nylon, wood, offer

high opposition to the passage of electricity through them. They are called insulators.

● Point Charge: When the linear size of charged bodies is much smaller than the

distance separating them, the size may be ignored and the charge bodies can then be

treated as point charges.

● Conduction: Transfer of electrons from one body to another, it also refers to flow of

charged electrons in metals and ions in electrolytes and gases.

● Induction: The temporary separation of charges in a body due to a charged body in

the vicinity. The effect lasts as long as the charged body is held close to the body in

which induction is taking place.

● Quantization of charges: Charge exists as an integral multiple of basic electronic

charge. Charge on an electron is 1.6 x 10-19 C.

● Electroscope: A device to detect charge, to find the relative magnitude of charge on

two charged bodies. A suitably charged electroscope can be used to find the nature of

charge on a charged body.

● Coulomb: S.I unit of charge defined in terms of 1 ampere current flowing in a wire to

be due to 1 coulomb of charge flowing in 1 s.

1 coulomb = collective charge of 6 × 1018 electrons

● Conservation of charge: Charge can neither be created nor destroyed in an isolated

system; it (electrons) only transfers from one body to another.

● Coulomb’s Force: It is the electrostatic force of interaction between the two point

charges.
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● Coulomb's law: A mathematical expression based on coulomb's law to show the

magnitude as well as direction of mutual electrostatic force between two or more

charges.

𝐹 = 𝐾
𝑞

1
×𝑞

2

𝑟2

● Vector form of Coulomb's law: A mathematical expression based on coulomb's law

to show the magnitude as well as direction of mutual electrostatic force between two

or more charges. Force between charges q1 and q2, F12 is the force on 1 due to 2,

depending upon the nature of the charges (both positive, both negative or q1 positive

and q2 negative or q2 positive and q1 negative)

vector shows the direction of the force     𝑟
12

𝐹
12

= 1
4πε

0

𝑞
1
𝑞

2

𝑟2
12

𝑟
12

Laws of vector addition:

● Triangle law of vector addition: If two vectors are represented by two sides of a

triangle in order, then the third side represents the resultant of the two vectors.

● Parallelogram law of vector addition: If two vectors are represented in magnitude

and direction by adjacent sides of a parallelogram then the resultant of the vectors is

given by the diagonal passing through their common point.

Also resultant of vectors P and Q acting at angle of θ is given by

𝑅 = 𝑃2 + 𝑄2 + 2𝑃𝑄𝑐𝑜𝑠θ

● Polygon law of vector addition: Multiples vectors may be added by placing them in

order of a multi sided polygon, the resultant is given by the closing side taken in

opposite order.

● Linear charge density: The linear charge density, ƛ is defined as the charge per unit

length.

● Surface charge density: The surface charge density is defined as the charge perσ

unit surface area. The surface charge density at the area element is given byσ ∆𝑠 σ

=  ∆𝑄
∆𝑠 .

● Volume charge density: The volume charge density is defined as the charge perρ

unit volume.
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● Superposition Principle: For an assembly of charges q1, q2, q3, ..., the force on any

charge, say q1, is the vector sum of the force on q1 due to q2, the force on q1 due to q3,

and so on. For each pair, the force is given by Coulomb's law for two point charges.

● Electric field lines: An electric field line is a curve drawn in such a way that the

tangent at each point on the curve gives the direction of the electric field at that point.

● Area vector: The area element vector ΔS at a point on a closed surface equals ΔS 𝑛
^

where ΔS is the magnitude of the area element and is a unit vector in the direction𝑛
^

of outward normal at that point.

● Gaussian surface: The closed surface that we need to choose for applying Gauss’s

law to a particular charge distribution is called the Gaussian surface.

● Gauss’s Theorem/Law: The flux of the electric field through any closed surface S is

1/ε0 times the total charge enclosed by that surface.

● Electric field the space around a charge where its influence may be experienced by

other charged bodies. The field strength at appoint in the field is given by E

=electrostatic force per unit charge; unit is NC-1

● Electric field line electric field lines in an electric field which trace the path of a unit

positive charge

● Electric flux electric field lines crossing an area

● Electric flux density field lines crossing a unit area held perpendicular to the field

lines represented by φ unit weber

ф =E.∆𝑠

Introduction

When an external force does work in taking a body from a point to another against a force

like spring force or gravitational force; that work gets stored as potential energy of the body.

When the external force is removed, the body moves, gaining kinetic energy and losing an

equal amount of potential energy. The sum of kinetic and potential energies is thus

conserved. Forces of this kind are called conservative forces. Spring force and

gravitational force are examples of conservative forces.

The Coulomb force between two (stationary) charges is also a conservative force.
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This is not surprising, since both have inverse-square dependence on distance and differ

mainly in the proportionality constants – the masses in the gravitational law are replaced by

charges in Coulomb’s law.

Thus, like the potential energy of a mass in a gravitational field, we can define electrostatic

potential energy of a charge in an electrostatic field.

Electrostatic Potential and Potential difference

Fig shows: A test charge (q > 0, means a positive charge) is moved from the point R to the

point P against the repulsive force on it by the charge Q (> 0) placed at the origin.

Consider an electrostatic field due to some charge Q placed at the origin. Now, imagine𝐸→

that we bring a test charge q from a point R to a point P against the repulsive force on it due

to the charge Q.

This   will   happen   if   Q   and q   are   both   positive and both negative.

For   definiteness, let   us   take   Q,   q   >   0.

Two assumptions may be made here:

First,

We assume that the test charge q is so small that it does not disturb the original

configuration, namely   the   charge   Q   at   the origin.

Second,

In bringing the charge q from R to P, we apply an external force just enough to counter,  𝐹
𝑒𝑥𝑡

→

the repulsive electric force (i.e., = - ). This means there is no net force on or 𝐹
𝐸

→
  𝐹

𝑒𝑥𝑡

→
 𝐹

𝐸

→

acceleration of the charge q when it is brought from R to P, i.e., it is brought with

infinitesimally slow constant speed.

Thus, work done by external forces in moving a charge q from R to P is:
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𝑊
𝑅→𝑃  

=  
𝑅

𝑃

∫  𝐹
𝑒𝑥𝑡

→
. 𝑑𝑟

→

𝑊
𝑅→𝑃

=  −
𝑅

𝑃

∫  𝐹
𝐸

→
. 𝑑𝑟

→
 

This work done is against electrostatic repulsive force and gets stored as the potential energy

of the charge.

∆𝑈 =  𝑈
𝑃
 – 𝑈

𝑅
 =  𝑊

𝑅→𝑃

V(r) = VP =
𝑊

∞→𝑃

𝑞
0

=
𝑈

𝑃

𝑞
0

=
𝑞

0
𝑄

4πε
0
𝑟/𝑞

0

𝑉 
(𝑟)

=  𝑉
𝑃
 =  𝑄

4πε
0
𝑟

The S.I unit of electric potential is J/C or volt.

Potential difference between any two point P & R is given by:

𝑉
𝑃
 − 𝑉

𝑅
 =  𝑊

𝑅→𝑃
/𝑞

0
 =  𝑈

𝑃
 –𝑈

𝑅
/𝑞

0

𝑊
𝑅→𝑃

 =  𝑞
0
 [𝑉

𝑃
 − 𝑉

𝑅
 ] 

Note: here that this displacement is in an opposite sense to the electric force and hence

work done by electric field is negative, i.e. – )𝑊
𝑅→𝑃

Therefore, we can define electric potential energy difference between two points as the

work required to be done by an external force in moving (without accelerating) charge

q from one point to another for an electric field of any arbitrary charge configuration.

Potential energy of a point charge ‘q’ may be defined as the amount of work done in

bringing a charge ‘q’ from infinity to that point against the force of repulsion due to

charge ‘Q’ without any acceleration.

Similar deduction for potential is true for any sign of charge although we have derived it for

, for 𝑄 > 0 𝑄 <  0 𝑉 <  0

Work done by the external force per unit positive test in bringing it from infinity to the point

is negative. This is equivalent to saying that the work done by the electrostatic force in

bringing the unit positive charge from infinity to the point P is positive (this is as it should

be if Q < 0 the force on a unit positive test charge is attractive, so that the electrostatic force

and displacement from infinity to our point P are in the same direction.
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This helps us to describe infinity. In the context, the potential at infinity if zero or it is

the boundary of the electrostatic field (the region of influence) of the charge, or charges

in consideration.

Electric  Potential due to a Point Charge

Electrostatic potential ’V’ at a point ‘P’ in an electric field of a point charge Q is equal to the

amount of work done in bringing unit test charge from infinity to that point (P) against the

repulsion of the field without any acceleration.

Consider a point charge Q at the origin as shown in the Fig.

For definiteness, we take Q to be positive. We wish to determine the potential at any point P

with position vector r from the origin. For that we must calculate the work done in bringing a

unit positive test charge from infinity to the point P.

For Q > 0, the work done against the repulsive force on the test charge is positive. Since

work done is independent of the path, we choose a convenient path – along the radial

direction from infinity to the point P.

Our point charge Q is placed at origin O.

Electric potential at point P will be equal to the amount of work done in bringing a unit

positive test charge from infinity to the point P.

The force acts away from the charge Q. the small work done in moving the test𝐹
→

charge q0 from A to B through small displacement ‘dx’ against the electrostatic force is

:

𝑑𝑊 =  𝐹
→

. 𝑑𝑟
→

 =  𝐹 𝑑𝑟 𝑐𝑜𝑠 180° =  −  𝐹. 𝑑𝑟
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Think Why 1800?

Total work done (W) by the external force is obtained by integrating

The negative sign appears because for , is positive. Δ𝑟' <  0 𝑊

𝑊 =  −
∞

𝑟

∫ 𝑄

4πε
0
𝑟'2

𝑑𝑟' = 𝑄

4πε
0
𝑟'

||||

||||
∞

𝑟

= 𝑄
4πε

0
𝑟

Using rules of integration

𝑊
∞→𝑃

=−
∞

𝑟

∫ 𝐹𝑑𝑟 =−
∞

𝑟

∫ 𝑞
0
𝐸𝑑𝑟 =− 𝑞

0
∞

𝑟

∫ 𝑄
4πε

0
𝑟2𝑑𝑟

𝑉 𝑟( ) = 𝑄
4πε

0
𝑟

Thus the electric potential due to a point charge is spherically symmetric and it depends only

on the distance of the observation point from the charge and not on the directions from the

charge

This means at all locations at distance x from the charge in 3 dimensional space, we

have the same potential.

Here, we have assumed that the potential energy of the system is zero at infinity.

Potential energy difference (ΔU) depends only on initial and final positions and is

independent of path followed in going from one point to other because the electrostatic force

is conservative

Example:

(a) Calculate the potential at a point P due to a charge of 4 × 10–7C located 9 cm

away.

(b) Hence obtain the work done in bringing a charge of 2 × 10–9 C from infinity to

the point P. Does the answer depend on the path along which the charge is

brought?

Solution:

(a) 𝑉 𝑟( ) = 𝑄
4πε

0
𝑟 = 9×109 𝑁𝑚2 𝐶2 × 4×10−7𝐶

0.09 𝑚 = 4×104𝑉

(b) 𝑊 =  𝑞𝑉 =  2×10−9𝐶 ×4×104𝑉 =  8×10−5𝐽

No, work done will be path independent. Any arbitrary infinitesimal path can be resolved

into two perpendicular displacements: One along r and another perpendicular to r. The work

done corresponding to the later will be zero.
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Example:

Show the Variation of potential V with r [in units of (Q/4π ) m-1] and electric field E with rε
0

in units of (Q/4π ) m-2] for a point charge Q.ε
0

Solution:

The blue curve is showing variation of potential with distance for a point charge

The black curve shows the variation of electric field with distance for a   point charge

Example:

Figures (a) and (b) show the field lines of a positive and negative point charge

respectively

(a) Give the signs of the potential difference – ; – .𝑉
𝑝

𝑉
𝑞

𝑉
𝐵

𝑉
𝐴

(b) Give the sign of the potential energy difference of a small negative charge between the

points Q and P; A and B.
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(c) Give the sign of the work done by the field in moving a small positive charge from Q to

P.

(d) Give the sign of the work done by the external agency in moving a small negative charge

from B to A.

(e) Does the kinetic energy of a small negative charge increase or decrease in going from B

to A?

Solution:

(a) As ;𝑉∝ 1
𝑟 𝑉

𝑃
> 𝑉

𝑄
. 𝑇ℎ𝑢𝑠,  𝑉

𝑃
− 𝑉

𝑄( )𝑖𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒.  

Also 𝑉
𝐵

 𝑖𝑠 𝑙𝑒𝑠𝑠 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑡ℎ𝑎𝑛 𝑉
𝐴

. 𝑇ℎ𝑢𝑠,  𝑉
𝐵

> 𝑉
𝐴

𝑜𝑟  𝑉
𝐵

− 𝑉
𝐴( )𝑖𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒.

(b) A small negative charge will be attracted towards positive charge. The negative

charge moves from higher potential energy to lower potential energy. Therefore, the

sign of potential energy difference of a small negative charge between Q and P is

positive.

Similarly, (P.E.) A > (P.E.) B and hence the sign of potential energy differences is

positive.

(c) In moving a small positive charge from Q to P, work has to be done by an external

agency against the electric field. Therefore, work done by the field is negative.

(d) In moving a small negative charge from B to A work has to be done by the external

agency. It is positive.

(e) Due to the force of repulsion on the negative charge, velocity decreases and hence the

kinetic energy decreases in going from B to A.

Example:

Two charges 3 × 10-8 C and –2 × 10-8C are located 15 cm apart. At what point on the line

joining the two charges is the electric potential zero?

Take the potential at infinity to be zero.

Solution:

Let us take the origin O at the location of the positive charge.

The line joining the two charges is taken to be the x-axis; the negative charge is taken to be

on the right side of the origin.
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Let P be the required point on the x-axis where the potential is zero.

If x is the x- coordinate of P, obviously x must be positive.

(There is no possibility of potentials due to the two charge)

adding up to zero for x < 0.) If x lies between O and A, we have

1
4πϵ

0

3×10−8

𝑥×10−2 − 2×10−8

15−𝑥( )×10−2
⎡⎢⎣

⎤⎥⎦
= 0

Where x is in cm, hence
3
𝑥 − 2

15−𝑥 = 0

Which gives x=9 cm

If x lies on the extended line OA, the required condition is
3
𝑥 − 2

𝑥−15 = 0

x = 45 cm

Thus, electric potential is zero at 9 cm and 45 cm away from the positive charge on the

side of the negative charge. Note that the formula for potential used in the calculation

required choosing potential to be zero at infinity.

Example:

A charge of 8 C is located at the origin. Calculate the work done in taking a small charge of𝑚

–2 × 10-9 C from a point P (0, 0, 3 cm) to a point Q (0, 4 cm, 0), via a point R (0, 6 cm, 9

cm).

Solution:

Work done = potential difference between P and Q or work done in carrying the charge

of –2 × 10-9 C from P to Q

𝑊
𝑃𝑄

= 𝑞 𝑉
𝑃

− 𝑉
𝑄( )

𝑊
𝑃𝑄

= 8×10−3𝐶×9×109 × − 2×10−9( ) 1

3×10−2 − 1

4×10−2
⎡⎢⎣

⎤⎥⎦
𝑉

=− 144×10−3 × 102 − 1
12 ( ) = 1. 2𝐽

Even if the path is made different the work done remains the same as electrostatic force

is a conservative force.

Electric Potential due to a System of charges
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Consider a system of charges with position vectors relative to𝑞
1
,  𝑞

2
,  ……𝑞

𝑛
𝑟

1
, 𝑟

2
, ……., 𝑟

𝑛

some origin.

Fig: Potential at a point due to a system of charges is the sum of potentials due to individual

charges.

The potential V1 at P due to the charge q1 is:

𝑉
1
 =  1

4πε
0

𝑞
1

𝑟
1𝑃

Where, is the distance between q1 and P 𝑟
1𝑃

Similarly, the potential at point P due to other charges will be given by:

,𝑉
2
 =  1

4πε
0

𝑞
2

𝑟
2𝑃

 𝑉
3

=  1
4πε

0

𝑞
3

𝑟
3𝑃

Therefore, total potential V at point P due to all charges is obtained by superposition

principle which is equal to algebraic sum of potential due to the individual charges at

that point.

𝑉 =  𝑉
1

+  𝑉
2

+...  +  𝑉
𝑛

𝑉 =  1
4πε

0

𝑞
1

𝑟
1𝑃

+
𝑞

2

𝑟
2𝑃

+ ….
𝑞

𝑛

𝑟
𝑛𝑃

( )
𝑉 =  1

4πε
0 𝑖=1

𝑛

∑
𝑞

𝑖

𝑟
𝑖𝑃

Why not vector sum?
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Example:

Two charges and are located 12 cm apart. At what point on the line4 × 10−8𝐶 –3 × 10 −8𝐶

joining the two charges is the electric potential zero? Take the potential at infinity to be zero.

Solution:

Let us take the origin O at the location of the positive charge. The line joining the two

charges is taken to be the x-axis; the negative charge is taken to be on the right side of the

origin.

Let P be the required point on the x-axis where the potential is zero. If x is the x-coordinate of

P, obviously x must be positive. (There is no possibility of potentials due to the two charges

adding up to zero for x < 0.) If x lies between O and A, we have:

1
4πε

0

4×10−8

𝑥×10−2 − 3×10−8

(12−𝑥)×10−2
⎡⎢⎣

⎤⎥⎦
= 0

4×10−8

𝑥×10−2 − 3×10−8

(12−𝑥)×10−2 = 0

4
𝑥 − 3

(12−𝑥) = 0

This gives:

𝑥 = 6. 85𝑐𝑚

Electric Potential due to a Uniformly Charged thin Spherical Shell

Consider a uniformly charged spherical shell of radius R and carrying charged Q.

To calculate potential at point P at a distance r from its center o is as

shown:

For a uniformly charged spherical shell, the electric field outside the shell

is as if the entire charge is concentrated at the centre. Thus, the potential

outside the shell is given by

(r )𝑉 = 𝑞
4πε

0
𝑟

≥𝑅

Where q is the total charge on the shell and R is its radius.

The electric field inside the shell is zero.

This implies that potential is constant inside the shell (as no work is

done in moving a charge inside the shell), and, therefore, equals its

value at the surface, which is

𝑉 = 𝑞
4πε

0
𝑅
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Graph showing the variation of potential from the center of a charged spherical hollow shell.

Example:

A spherical conductor of radius 12 cm has a charged 1.6 10-7 C distributed uniformly on its×

surface. What is electric potential?

(a) inside the sphere

(b) just outside the sphere

(c) At a point 18 cm from the center of the sphere?

Solution:

 𝑉 =  𝑘𝑄/𝑅   𝑓𝑜𝑟 𝑟 ≤ 𝑅

 𝑉 =  𝑘𝑄/𝑟    𝑓𝑜𝑟 𝑟 >  𝑅

(a) 𝑉 (𝑖𝑛𝑠𝑖𝑑𝑒) =  𝑘𝑄 /𝑅 = 9×109×1.6×10−7

12×10−2  =  1. 2 × 10−2 𝑣𝑜𝑙𝑡

(b) 𝑉 (𝑎𝑡 𝑠𝑢𝑟𝑓𝑎𝑐𝑒) =  𝑘𝑄/𝑅 =  1. 2 × 104 𝑉

(c) For potential at any point outside the shell:

𝑉 = 𝑘𝑄 /𝑟 =  9 ×109 × 1.6 × 10−7

18 ×10−2 = 0. 8 × 10 4𝑉 = 8 × 103 𝑉 =  8 𝑘𝑉

Potential due to an Electric Dipole

Electric dipole is a system of two equal and opposite charges (-q) & (+q) separated by (small)

distance (2a). Its total charge is zero. It is characterized by a dipole moment whose

magnitude is: and pointed in direction (–q to +q).(𝑝 =  𝑞×2𝑎)

Net potential at any point P at a distance r from the midpoint of dipole in a direction OP

making angle with dipole moment p is given by using superposition principle:θ
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 𝑉
𝑃
 =  𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑎𝑡 𝑃 𝑑𝑢𝑒 𝑡𝑜 – 𝑞 +  𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑎𝑡 𝑃 𝑑𝑢𝑒 𝑡𝑜 + 𝑞 =  𝑉

1
 +  𝑉

2

𝑉𝑃 =  + 𝑘𝑞
𝑟

1
+ 𝑘 −𝑞( )

𝑟 
2

=  𝑘 𝑞 [1/𝑟
1
 – 1/𝑟

2
 ]

𝑟1 =  𝐴𝑃  ≈  𝑀𝑃 =  𝑂𝑃 +  𝑂𝑀 =  𝑟 +  𝑎 𝑐𝑜𝑠 θ 

𝑟2 =  𝐵𝑃  ≈  𝑁𝑃 =  𝑂𝑃 – 𝑂𝑁 =  𝑟 – 𝑎 𝑐𝑜𝑠 θ 

∴𝑉 = 𝑘𝑞 1
𝑟−𝑎 𝑐𝑜𝑠 θ − 1

𝑟+𝑎 𝑐𝑜𝑠 θ ⎡⎣ ⎤⎦

= 𝑘𝑞 𝑟+𝑎𝑐𝑜𝑠 θ −𝑟+𝑎𝑐𝑜𝑠 θ 

𝑟2−(𝑎 𝑐𝑜𝑠 θ)2 
⎡⎢⎣

⎤⎥⎦

= 𝑘𝑞×2𝑎×𝑐𝑜𝑠 θ 

𝑟2−(𝑎 𝑐𝑜𝑠 θ)2 ( )
= 𝑘𝑝𝑐𝑜𝑠 θ 

𝑟2−(𝑎 𝑐𝑜𝑠 θ)2 

       𝑤ℎ𝑒𝑟𝑒 𝑝 =  𝑞×2𝑎  

= 𝑘𝑝
→

.𝑟
^

𝑟2−(𝑎 𝑐𝑜𝑠 θ)2 

𝑉≈𝑘 𝑝
→

.𝑟
^

𝑟2     (𝑤ℎ𝑒𝑟𝑒,  𝑟 >>> 𝑎)

Special Cases:

A. When the point ‘P’ lies on the axial line of the dipole , = 00 or 1800; andθ

𝑉 =  ± 𝑘𝑝/𝑟2

B. When the point ‘P’ lies on the equatorial line of the dipole, = 900 and V = 0.θ

However, the electric field at such points is non-zero.

The important contrasting features of electric potential of a dipole and electric

potential due to a point charge are:

● The potential due to a dipole depends not just on r but also on the angle between

the position vector and the dipole moment it is however symmetric about p𝑟
→
 𝑝

→
 

.which means, if we rotate the position vector r about p keeping θ fixed .The

points corresponding to P on the cone so generated will have the same potential

as at P.

● The electric dipole potential falls off, at large distances, as 1/r2, and not as 1/r2

for a single charge.

Example:
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A short electric dipole has a dipole moment of 4 × 10-9 C cm. Determine the electric potential

due to the dipole at a point distance 0.3m from the center of dipole situated:

(a) on the axial line

(b) on the equatorial line

(c) on a line making an angle of 600 with the dipole axis.

Solution:

𝑝 =  4× 10−9 𝑐𝑚 𝑎𝑛𝑑 𝑟 =  0. 3𝑐𝑚

(a) potential at a point on axial line is:

𝑉 =  𝑘𝑝 𝑐𝑜𝑠 0°  / 𝑟2 =  9×10 9× 4×10−9 / (0. 3)2 =  400 𝑉

(b) potential at a point on equatorial line is:

𝑉 =  𝑘𝑝 𝑐𝑜𝑠 90° 

𝑟2  =  0

(c) potential at a point on line making = 600 with is: θ

𝑉 =  𝑘𝑝 𝑐𝑜𝑠 60°

𝑟2 =  9×109 × 4 × 10 −9× 1/2 

(0.3)2 =  200𝑉

Example:

Two charges –q and +q are located at points (0, 0, –a) and (0, 0, a), respectively.

What is the electrostatic potential at the points (0, 0, z) and (x, y, 0)?±

Solution:

Let us read the question once again carefully and note down the given parameters

Using symbols, we can write

The charge (-q) is located on the negative side of the z-axis at a distance ‘a’ from the origin

‘O’ and the charge +q is located on the positive side of the z-axis at a distance of ‘a’ from the

origin.
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To find the potential at the point p (0, 0, z), let us find the distance of this point from the

given charges.

Distance from the charge +q = AP = r 1 = z - a

Distance from the charge - q = BP = r2 = z + a

Potential at P due to charge +q = V1 = 𝑘 𝑞
𝑟

1
= 1

4πϵ
0

𝑞
(𝑧−𝑎)

Potential at P due to charge - q = V2 = − 𝑘 𝑞
𝑟

2
=− 1

4πϵ
0

𝑞
(𝑧+𝑎)

Net Potential at P, V = V1 + V2 = 𝑞
4πϵ

0

1
𝑧−𝑎 − 1

𝑧+𝑎( )
= 𝑞

4πϵ
0

𝑧+𝑎−(𝑧−𝑎)

𝑧2−𝑎2( )
= 𝑞

4πϵ
0

2𝑎

𝑧2−𝑎2( )
Similarly, when we want to find the potential at the point P`(0,0,-z)

Then the distance of the point from +q charge = AP`

= r1 = z + a

The distance of the point from –q charge = BP` = r2
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V1 = 𝑘 𝑞
𝑧+𝑎 − 𝑘 𝑞

𝑧−𝑎 = 𝑘𝑞 𝑧−𝑎−𝑧−𝑎)

𝑧2−𝑎2( )

= 𝑘𝑞 −2𝑎

𝑧2−𝑎2( )
Part II

The point P (x, y, z) lies in the X-Y plane, which is the perpendicular bisector of the z-axis.

This point p will be at equal distance from the charges -q and +q i.e. AP = BP = r

Potential at P due to +q charge and due to –q charge will be equal but negative of each other.

Vnet = 0

Note: In the same way, solve the Q. No. 2.21 of NCERT.

Two charges –q and +q are located at points (0, 0, –a) and (0, 0, a), respectively.
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● What is the electrostatic potential at the points (0, 0, z) and (x, y, 0)?

● Obtain the dependence of potential on the distance r of a point from the origin

when r/a >> 1.

● How much work is done in moving a small test charge from the point (5,0,0) to

(–7,0,0) along the x-axis?

● Does the answer change if the path of the test charge between the same points is

not along the x-axis?

Equipotential Surfaces

Any surface which has the same electric potential at every point on it is known as

equipotential surface. For a single charge Q, the potential at any point is given by:

𝑉 𝑟( ) = 𝑞
4πε

0
𝑅

For a single charge q

a. Equipotential surfaces are spherical surfaces centered at the charge, and

This would be the case even for a negative charge placed in vacuum.

For the same charge we can visualize the electric field lines

b. Electric field lines are radial, starting from the charge if

q > 0

For any charge configuration, equipotential surface through a point is normal to the

electric field lines  at that point.
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Equipotential surfaces for a uniform electric field.

If the field lines were not normal to the equipotential surface, it would have non-zero

components along the surface.

To move a unit test charge against the direction of the component of the field, work would

have to be done. But this is in contradiction to the definition of an equipotential surface: there

is no potential difference between any two points on the surface and no work is required to

move a test charge on the surface.

The electric field must, therefore, be normal to the equipotential surface at every point.

Equipotential surfaces offer an alternative visual picture in addition to the picture of

electric field lines around a charge configuration.

For a uniform electric field E, say, along the x -axis, the equipotential surfaces are planes

normal to the x -axis, i.e., planes parallel to the y-z plane.

Equipotential surfaces for

a. A dipole

b. Two identical positive charges
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Relation between Electric Field and Potential

Let us consider two equipotential surfaces A and B with potentials V and V+ dV, where dV

is change in potential in the direction of electric field E.

Let P be a point on the surface B. dx is perpendicular distance from the surface A to P.

Imagine a test charge q0 is moved along this perpendicular from surface B to surface A

against the electric field.

The work done in the process is:

= q0 [VA – VB]𝑑𝑊
𝐵→𝐴

= q0 [V – (V- dV)]

= q0 dV

Same we can calculate as:

= = -q0 E dx𝑑𝑊
𝐵→𝐴

Adding work done from both the process

 𝑑𝑉 =  −  𝐸𝑑𝑥

𝐸 =  −  𝑑𝑉/𝑑𝑥 

Or
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𝑉 =  −  𝐸
→| |  =  + 𝑑𝑉| |

𝑑𝑥

Two important conclusions can be drawn from the above relation between electric field

and potential:

(1) Electric field is in the direction in which potential decreases steepest.

(2) Its magnitude is given by the change in magnitude of potential per unit

displacement normal to the equipotential surface at that point.

Example:

Three points A, B and C lie in a uniform electric field E of 5 x103 N/C as shown in figure.

Find the potential difference between A and C.

Solution:

Point B and C lies on same equipotential surface,

𝑉
𝐵

  =  𝑉
𝐶

VA – VC = (VA – VB) + (VB – VC)

= +  𝐸 𝑑𝑥 + 0

Where,    (dx = AB = ) = )𝐴𝐶2 − 𝐵𝐶2 52 − 32 = 4𝑐𝑚

𝑉
𝐴

 – 𝑉 
𝐶

=  5×10 3×4×10−2

=200 V

Properties of equipotential surfaces

● No work is done in moving a charge over an

equipotential surface:
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𝑊
𝐵→𝐴

  =  𝑞 [𝑉
𝐵

−  𝑉
𝐴

]

= q × 0

= 0 J

VA = VB at equipotential surface.

● Electric field is always normal to the equipotential surface at every point.

For any two points A and B on Equipotential surface:

WA→B = q [VB - VA]

= q∫ 𝑑𝑉
𝐴

𝐴

∫ 𝐸
→

. 𝑑𝑙
→

= q × (-1)

= 0

Which can only happen when is perpendicular to the equipotential surface.

● Equipotential surfaces are closer together in the regions of strong field and

further apart in the regions of weak field.

𝐸 =  −  𝑑𝑉 / 𝑑𝑟

𝑑𝑟 = −𝑑𝑉
𝐸

For given potential difference = constant𝑑𝑉 𝑑𝑟∝ 1
𝐸

Hence, the gap between the equipotential surfaces will be smaller in the regions,

where the electric field is stronger and vice-versa.

● No two equipotential surfaces can intersect each other. If they intersect then there

will be two values of electric potential at the point of intersection, which is

impossible.

Electrostatic Potential Energy:
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It is energy possessed by a system of charges by virtue of their positions when two charges

are at infinite distance apart, their potential energy is zero because no work has to be done in

moving one charge at infinite distance from the other. But when they are brought closer to

one another, work has to be done against the force of repulsion.

This work done gets stored as the potential energy.

Potential energy of a system of two point charges:

Suppose a point charge q1, shown in fig. is at rest at a point A in space. It will produce an

electric field around it and hence work has to be done in bringing q2 from infinity to point B

in the field of q1.

W1 = work done in bringing q1 from ∞ to B when q1 is at ∞=0

W2 = work done in bringing unit charge from ∞ to point B

= q2 × potential at B due to charge q1

= q2 × kq1/r12

W2 = kq1q2/r12 (where r12 = distance between points A and B).

As the work done in collecting charges q1 & q2 from ∞ to their respective

positions at A & B respectively are stored as the potential

energy U of the system,

U = W1 + W2 = 0 + 𝑘
𝑞

1
𝑞

2

𝑟
12

i.e. 𝑈 = 𝑘
𝑞

1
𝑞

2

𝑟
12

U >0; when q1q2 > 0

& U > 0; when q1q2 < 0

Potential energy of a system of N point charges:
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If are placed in a space as shown in fig;𝑞
1
,  𝑞

2
,  𝑞

3
,  𝑞

4
, ……𝑞

𝑛

Then the potential energy of the system is equal to the sum of work done in collecting

them from infinity to their respective positions.

where,𝑈 = 1
2

𝑖=1

𝑁

∑
𝑗=1

𝑁

∑ 𝑘
𝑞

𝑖
𝑞

𝑗

𝑟
𝑖𝑗

 𝑖≠𝑗 

As double summation counts every pair twice, to avoid this factor ½ has been introduced.

For three charges system:𝑞
1
,  𝑞

2
,  𝑞

3

Potential energy 𝑈 = 𝑘
𝑞

1
𝑞

2

𝑟
12

+
𝑞

1
𝑞

3

𝑟
13

+
𝑞

2
𝑞

3

𝑟
23

⎡⎢⎣
⎤⎥⎦

And for four charge system it will be as:

Potential energy

𝑈 = 𝑘
𝑞

1
𝑞

2

𝑟
12

+
𝑞

1
𝑞

3

𝑟
13

+
𝑞

1
𝑞

4

𝑟
14

+
𝑞

2
𝑞

3

𝑟
23

+
𝑞

2
𝑞

4

𝑟
24

+
𝑞

3
𝑞

4

𝑟
34

⎡⎢⎣
⎤⎥⎦

Example:

a. Determine the electrostatic potential energy of a system consisting of two charges

and (and with no external field) placed at (–9 cm, 0, 0) and (9 cm, 0, 0)7 µ𝐶 –2 µ𝐶

respectively.

b. How much work is required to separate the two charges infinitely away from each

other? Also called dissociation energy.

Solution:

(a) U= 1
4πε

0

𝑞
1
𝑞

2

𝑟 = 9×109 × 7×(−2)×10−12

0.18 =− 0. 7𝐽
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(b) W= 𝑈
2

− 𝑈
1

= 0 − 𝑈 = 0 − − 0. 7( ) = 0. 7 𝐽

Potential Energy in an External Field:

Potential energy of a single charge:

Let any source at very large distance produced an electric field in the surrounding region.

Let we bring a charge ‘q’ from infinity to a point in the field region where infinity to a point

in the field region where potential due to source is V(r), then the work done in bringing

charge ‘q’ from infinity to point P in field .𝑞𝑉(𝑟)

𝑊 =  𝑞 𝑉(𝑟)

Potential energy of a dipole in a uniform external field

Consider a dipole with charges q1 = +q and q2 = –q placed in a uniform electric field E, as

shown in Fig.

You will recall that in a uniform electric field, the dipole experiences no net force; but

experiences a torque given by: τp × E which will tend to rotate it (unless p is parallel or anti

parallel to E). Suppose an external torque τ(τext) is

applied in such a manner that it just neutralizes this

torque and rotates it in the plane of paper from angle θ0

to angle θ1 at an infinitesimal angular speed and without

angular acceleration.

The amount of work done by the external torque will be

given by:
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Potential energy of a dipole in a uniform external field.

𝑊 =  
θ

0

θ
1

∫ τ
𝑒𝑥𝑡

θ( )𝑑θ =
θ

0

θ
1

∫ 𝑝𝐸𝑠𝑖𝑛θ𝑑θ = 𝑝𝐸(𝑐𝑜𝑠θ
0

− 𝑐𝑜𝑠θ
1
) 

This work is stored as the potential energy of the system.

We can then associate potential energy U (θ) with an inclination θ of the dipole. Similar to

other potential energies, there is a freedom in choosing the angle where the potential energy

U is taken to be zero.

We can write:

𝑈 θ( ) = 𝑝𝐸 𝑐𝑜𝑠 π
2 −  𝑐𝑜𝑠θ( ) =  − 𝑝𝐸𝑐𝑜𝑠θ =  − 𝑝𝐸

Example:

A molecule of a substance has a permanent electric dipole moment of magnitude 10-29 C m.

A mole of this substance is polarized (at low temperature) by applying a strong electrostatic

field of magnitude 106 V m-1.

The direction of the field is suddenly changed by an angle of 60º. Estimate the heat released

by the substance in aligning its dipoles along the new direction of the field. For simplicity,

assume 100% polarization of the sample

Solution:

Here, dipole moment of each molecules = 10-29 cm

As 1 mole of the substance contains 6× 1023 molecules; then total dipole moment of all the

molecules,

p = 6× 1023× 10-29 C m= 6× 10-6 C m

Initial potential energy, 𝑈
𝑖
 =  −  𝑝𝐸 𝑐𝑜𝑠 θ =  − 6× 10 −6 × 106𝑐𝑜𝑠 00 =  − 6𝐽

Final potential energy (when, ).θ =  00

=𝑈
𝑓

− 6× 10 −6 × 106𝑐𝑜𝑠 600 =  − 3𝐽

Change in potential energy= -3 J- (-6 J) = 3 J

So, there is loss in potential energy.

This must be the energy released by the substance in the form of heat in aligning its dipoles.

29



Summary

● Electrostatic force is a conservative force. Work done by an external force (equal and

opposite to the electrostatic force) in bringing a charge q from a point R to a point P is

VP – VR, which is the difference in potential energy of charge q between the final and

initial points.

● Potential at a point is the work done per unit charge (by an external agency) in

bringing a charge from infinity to that point. Potential at a point is arbitrary to within

an additive constant, since it is the potential difference between two points which is

physically significant. If potential at infinity is chosen to be zero; potential at a point

with position vector r due to a point charge Q placed at the origin is given is given by:

𝑉 𝑟( ) = 𝑄
4πε

0
𝑟

● The electrostatic potential at a point with position vector r due to a point dipole of

dipole   moment p placed at the origin is:

𝑉 𝑟( ) = 1
4πε

0

𝑝𝑟
^

𝑟2

● The result is true also for a dipole (with charges –q and q separated by: 2a for r >>

a

● For a charge configuration with position vectors r1,r2 , ... rn, the𝑞
1
,  𝑞

2
,  𝑞

3
,  𝑞

4
, ……𝑞

𝑛

potential at a point P is given by the superposition principle:

= 1
4πε

0

𝑞
1

𝑟
1𝑃

+
𝑞

2

𝑟
2𝑃

+ … +
𝑞

𝑛

𝑟
𝑛𝑃

( )
● An equipotential surface is a surface over which potential has a constant value. For a

point charge, concentric spheres centered at a location of the charge are equipotential

surfaces. The electric field E at a point is perpendicular to the equipotential surface

through the point. E is in the direction of the steepest decrease of potential.

● Potential energy stored in a system of charges is the work done (by an external

agency) in assembling the charges at their locations. Potential energy of two charges

q1, q2 at r1, r2 is given by

𝑈 =
𝑞

1
𝑞

2

4πε
0
𝑟

12

Where, r12 is distance between q1 and q2

● The potential energy of a charge q in an external potential is𝑉(𝑟) 𝑞𝑉(𝑟).

The potential energy of a dipole moment p in a uniform electric field E is –P.E.
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